
Final Project Report: March Madness Prediction Network

Sheraz Hassan
Georgia Institute of Technology

Atlanta, USA
shassan74@gatech.edu

Kiran Nazarali
Georgia Institute of Technology

Atlanta, USA
knazarali@gatech.edu

Henry Raman
Georgia Institute of Technology

Atlanta, USA
hraman8@gatech.edu

Sai-Aksharah Sriraman
Georgia Institute of Technology

Atlanta, USA
ssriraman3@gatech.edu

Abstract

March Madness, the annual National Collegiate Ath-
letic Association (NCAA) basketball tournament featuring
the top 68 college teams, presents a very hard challenge
in sports prediction due to its inherent unpredictability and
high-stakes nature. In 2014, Warren Buffett highlighted this
challenge by offering a billion dollars to anyone who could
perfectly predict the outcomes of all 67 games. Our project
aims to introduce a novel predictive model using a deep
learning approach to predict the results of March Madness.
We looked at leveraging historical game statistics and team
performances, including elements like hot and cold streaks,
to get to our desired results, which will not only enhance
fan engagement but also provide valuable information to
coaches and analysts. From the results of our approaches,
we found two key insights about how deep learning models
make connections for this type of data.

1. Introduction
Predicting all 67 March Madness games accurately has

remained a challenge, as the odds of predicting every sin-
gle one of these results correctly are about 1 in 147 quin-
tillion. The difficulty of this challenge stems from not just
the number of games but the inherent unpredictability of
the tournament, where upsets are common. Given that US
bettors wagered over 2.7 billion dollars on March Madness
this year and around 30-40% of the public closely follow
the tournament, an improved predictive model could have
significant implications. It could enhance fan engagement,
inform sports betting, and provide insights to coaches and
analysts. Even if a perfect bracket remains improbable, this
project seeks to uncover trends and patterns that influence
team performance, offering valuable insights into the dy-

namics of March Madness.
This project proposes a novel approach to predicting

March Madness outcomes using a time series Long Short-
Term Memory (LSTM) deep learning model. Unlike tradi-
tional statistical models, random forests, or past approaches
using deep neural networks, our method leverages historical
game statistics and team performance throughout the tour-
nament. By subtly incorporating key factors like hot and
cold streaks, the model aims to capture the ”human” ele-
ment that often drives unexpected victories.

2. Related Works
The study of predicting outcomes in the NCAA March

Madness basketball tournament is a point of interest for re-
searchers who utilize various statistical and machine learn-
ing methods. Shen et al. [4] evaluated support vector ma-
chines and two other machine learning models, including
random forests and a Bayesian approach,h to forecast the
results of two tournament years. Gumm et al. on the other
hand used a more statistical approach by creating an ensem-
ble model of regression functions and leveraged the Kag-
gle Machine Learning March Mania Competition, success-
fully placing in the top 15 percentile by comparing their
techniques against other entries [1]. Further research high-
lighted the impact of each player on the team performance
while showing that teams with previous postseason experi-
ence have a significant advantage in terms of victory mar-
gins [3]. This reflects on the idea that previous data of per-
formances effect the results and can be a strong predictor of
the results. Kim et al. expanded on these concepts by using
machine learning methods such as random forests. They
explored the importance of non-box score statistics, using
metrics like classification accuracy and the area under the
curve to assess model performance [2]. Building on this,
our approach aims to incorporate LSTM models to track

1



player performance across matches, aiming to optimize pre-
dictions and achieve superior outcomes. More details about
our dataset and methodology will follow in the next section.

3. Dataset
For the dataset, we required game-by-game box score

information for multiple NCAA Division I Men’s College
Basketball seasons. This data was provided by Bart Torvik
[5], which allows the game information from any season to
be downloaded to a spreadsheet, providing a dataset with
multiple years of information. For every game, each team’s
major statistical categories are tracked, including points, as-
sists, rebounds, steals, blocks, and field goal percentages.
With this data, we put together rolling windows of game his-
tory containing 10-12 statistical categories per team. Using
the process described later in the report, we created around
60,000 training samples, covering years 2011-2025.

4. Method / Approach
As discussed in the background, most of the current ap-

proaches to solving this type of problem have not investi-
gated the time series aspect. In basketball, momentum is an
important concept, whether it is during a game or over the
course of a few games. A particularly poor showing in one
game could lead to a reinvigorated effort in the next game,
and the opposite can also be true. A small win streak could
continue to snowball into a team’s performance peaking at
the right time. Thus, our methodology looked at leveraging
the potential information in a time series approach.

For a given matchup of Team A vs. Team B, we in-
cluded relevant statistics from each of Team A’s and Team
B’s previous games. If the current game is labeled in
time as T, stats from games T-1, T-2...T-X were used. An
example with just points and assists for Team A would
be: [Points(T-X), Assists(T-X)...Points(T-2), Assists(T-2),
Points(T-1), Assists(T-1)].

We had two separate outputs - one was a simple bi-
nary classification with a binary cross-entropy loss, denot-
ing which team is predicted to win the game. The other was
a two-element vector predicting the final score of the game,
with an MSE loss.

Given the time-series nature of this approach, the main
models were two variants of an LSTM and CNN-based deep
architecture for our neural network. Feeding it a sequence
of games would allow for connections to be made between
the games, potentially improving performances of the pre-
diction. We also trained a transformer as an alternative for
comparison to see if the time-series architecture provided
any benefits. The basis for comparison was the accuracy in
terms of correct and incorrect predictions for the winner of
each game in the 2025 March Madness tournament, and the
results will be discussed later in the report.

4.1. Data Pre-processing

In order to take the raw basketball game data and for-
mat it into rolling windows of game history, a custom pre-
processing methodology was created. The data from Bart
Torvik was loaded and the statistical categories that we want
to use as features (in-game statistics and/or seeding and cat-
egorical features) were identified. This raw data lacked col-
umn headers, thus requiring manual header assignments to
ensure the necessary data was recognized correctly by the
models.

The process using this data is as follows:

1. The data is split into Pandas dataframes for each team,
where each team’s dataframe contains all of the games
that the team has played during that season.

2. With a user-specified window size, we iterate through
each row of the original dataset (containing all the
games that occurred in the season)

3. For a given game, we identify the date the game oc-
curred and the two teams involved, and check in the
team-specific dataframes, if these teams have played
enough prior games to create a full window of game
history. If each team has played enough games, their
stats from each of those games are concatenated to
create a training sample with a size of (window size,
number of statistical categories * 2). The teams are
randomly assigned as either “Team1” or “Team2” to
reduce the possibility of overfitting in the models.

4. This training sample is then linked to a target of the
final score between the two teams in the game that they
play vs. each other (i.e., the game that we are at in the
original dataset as we iterate through it in Step 2).

With this process, we created a training dataset.
To test, the process is as follows:

1. Prompt the dataset creation function with the desired
date and teams, and create the appropriate sample

2. Use the trained model to predict the final score using
this sample

4.2. Exploratory Data and PCA Analysis

We began by examining the correlation matrix of the
game-level features to identify potential multicollinearity.
As expected, free throw attempts (FTA) and free throws
made (FTM) were found to be highly correlated, reflecting
the inherent dependency between attempts and conversions.

To reduce dimensionality and identify dominant patterns
in the data, we applied Principal Component Analysis
(PCA). The first principal component (PC1) captured the

2



largest variance and was most strongly associated with
field goals made (FGM), field goals attempted (FGA),
assists (AST), three-point attempts (3PA), and three-point
makes (3PM), suggesting it represents overall offensive
productivity.

The second component (PC2) revealed a contrasting
structure, where the same offensive metrics, when at-
tributed solely to Team 2, were negatively correlated. This
indicates that PC2 may differentiate relative offensive
performance between competing teams.

PC3 showed comparatively higher loadings for offensive
rebounds (OR) and fouls, pointing to a component that
reflects physical or aggressive styles of play.

To determine the appropriate number of principal
components to include as model inputs, we analyzed
the cumulative explained variance. We selected the top
components that collectively explained approximately 90%
of the total variance, allowing for a more compact and
informative feature set for downstream modeling.

Figure 1 shows the contribution of each statistic from the
original data towards the principal components that were
then used for training.

4.3. Baseline Models

We tested on three models as discussed above. All of
them have the same window size of three games, batch size
of 16/32 and learning rate of 0.001 for consistency, and each
model was trained for 50/100 epochs. We saved the best-
performing model for each category to see which architec-
ture performed the best.

4.3.1 Multi-Layer Perceptron (MLP)

The MLP is a fully-connected feed-forward model archi-
tecture designed to model non-linear relationships, which is
useful for recognizing complex patterns in data. The layer
architecture is as follows:

Fully Connected Layers: A series of dense layers (512,
256, 128, 64, 32, and 16 neurons)

Activation Functions: LeakyReLU for hidden layers,
Sigmoid for the final output

The MLP model processes structured game data, ap-
plies non-linear transformations, and reduces dimensional-
ity across hidden layers before making a final prediction us-
ing a sigmoid activation function.

4.3.2 Convolutional Neural Network (CNN)

CNNs are designed to extract spatial features from sequen-
tial data and are particularly proficient in long-term pattern

recognition.
Convolutional Layers: Three 1D convolutional layers

(64, 128, and 256 filters, respectively)
Pooling Layers: Max pooling after convolutional layers
Batch Normalization: Applied to each convolutional

layer
Fully Connected Layers: A series of dense layers (512,

256, 128, 64, and 1 neuron)
Activation Functions: LeakyReLU for hidden layers,

Sigmoid for the final output
The CNN architecture extracts hierarchical features us-

ing convolutional and pooling layers. The flattened feature
representation is passed through fully connected layers to
produce a final probability score for game predictions.

4.3.3 Long Short-Term Memory (LSTM)

One architecture used for basketball game outcome predic-
tion is an LSTM network. LSTMs are designed to process
sequential data and capture long-term dependency patterns.

Epochs: Defined dynamically at runtime
Hidden Dimension: Configurable
Number of LSTM Layers: Configurable
The LSTM layer processes input sequences with a hid-

den dimension and multiple layers. The final output is
passed through a fully connected layer, adjusting dimen-
sions for prediction.

4.4. Proposed Models

On top of the above mentioned baseline models, we pro-
pose three models that are designed to perform better by
combining different architectures. These models aim to
capture both spatial patterns and sequential dependencies
more effectively. Specifically, we explore two variations of
CNN-LSTM hybrids and one transformer to improve pre-
dictive performance.

4.4.1 Transformer

Transformers are used for processing sequential data
through attention mechanisms, allowing the model to hone
in on the most important portions of the input sequence.

Number of Attention Heads: 8
Number of Transformer Encoder Layers: 4
Dropout: 0.1 (between encoder layers)

The Transformer encoder layers process input sequences
through stacked layers of multihead attention and feed for-
ward networks. This allows the model to capture complex
dependencies between the elements of the input sequence.
The final prediction is produced by passing the output of the
encoder layers through one fully-connected layer.

3



Figure 1. PCA loadings capture correlations between original features and Principal Components

4.4.2 Sequential CNN-LSTM

We implemented a Sequential CNN-LSTM model where
the input data is first processed through a 1D convolutional
layer. The extracted features are then passed into an LSTM
layer to capture sequential dependencies. The final output
is produced through fully connected layers with a sigmoid
activation. This model was trained with a batch size of 16,
a learning rate of 0.001, and for 20 epochs using AdamW
optimizer and binary cross-entropy loss.

4.4.3 Parallel CNN-LSTM

In the Parallel CNN-LSTM model, the CNN and LSTM
branches process the input data independently before their
outputs are concatenated. The CNN branch extracts spa-
tial features through convolution and pooling, while the
LSTM branch models sequential patterns. The fused fea-
tures are passed through dense layers to make the final pre-
diction. The model was trained with hyperparameters sim-
ilar to those of the sequential model, using AdamW opti-
mization and binary cross-entropy loss.

5. Experiments and Results
We evaluate our models based on accuracy, precision,

F1-score and recall, which are standard metrics when work-
ing with binary classification. The F1-score is the weighted
average of Precision and Recall and is particularly useful in
datasets like ours where class distribution is uneven.

During training, binary cross-entropy (BCE) and mean-
squared error (MSE) are used as the loss functions. The

BCE loss is used to capture how well the network is predict-
ing a winner. MSE is being utilized as an auxiliary function
that tracks the error between the model prediction of final
score and the actual final score of a game.

5.1. Preliminary Results - Baseline Models

Accuracy Precision Recall F1-Score
MLP 0.60084 0.66734 0.62592 0.62134
CNN 0.63445 0.74630 0.62754 0.66983

LSTM 0.61660 0.61157 0.66013 0.61212
Table 1. Performance Metrics

From Figures 2 and 3, we see that the CNN performs
the best in terms of Accuracy, Precision and F1-Score.
However, the LSTM scores the best in recall. This means
that the CNN correctly identified the most true positives and
negatives over the total pool of observations. Additionally,
the positive predictions made by the CNN have the highest
chance of being correct. With the best F1-Score, the CNN
also has the best balance of precision and recall across
the board. However, the LSTM was able to identify the
most amount of positive cases present in the observations
having scored the highest recall. Thus, overall, the CNN
performed the best during the baseline experiments.

These results were based solely on the results of the 2019
season, to give an idea of how well a deep model may ac-
tually perform when given more data. Based on these re-
sults, we decided to explore an LSTM/CNN model as well

4



Figure 2. Training Results for each Architecture

Figure 3. Spider plot comparing performance across all baselines.

as a transformer. We also wanted to get a better understand-
ing of which features to include for training, which led to
the implementation of PCA, as described previously. The
resulting components were then used for training the trans-
former and LSTM models.

5.2. Final Results

In Table 2 we present the results of retraining all of the
baseline models along with the new models on all of the

data, besides 2025’s data, using PCA to determine the most
important statistics (S and P represent the Sequential and
Parallel implementations of the LSTM/CNN respectively).
From our results, we can see that CNN maintains the high-
est accuracy, precision and F1-score during the training
phase. However, the Transformer receives the maximum
possible recall, meaning that all true positives were identi-
fied and no false negatives were raised. This could mean
that the transformer adopts a message in which it raises ev-
ery result as ”positive” meaning that the accuracy is lower
due to the fact that even negative true labels were predicted
as positives (false positives). These results can be better vi-
sualized by the spider plot [4]

Accuracy Precision Recall F1-Score
MLP 0.60084 0.66734 0.62592 0.62134
CNN 0.63445 0.74630 0.62754 0.66983

LSTM 0.61660 0.61157 0.66013 0.61212
Transformer 0.62407 0.61196 1.0 0.65251

S-LSTM/CNN 0.63340 0.64048 0.75281 0.65311
P-LSTM/CNN 0.62969 0.65035 0.69317 0.64919

Table 2. Performance Metrics

Overall, the CNN most likely performs the best across
the board due to CNN’s proficiency in long-term pattern
recognition. Additionally, the deeper models, such as the
Transformer, S-LSTM/CNN and P-LSTM/CNN, suffer un-
der the condition of minimal data. Even with the data from
2011-2024, these models struggle to define robust patterns
in the data. Therefore, using a larger dataset would improve

5



the accuracy of the deeper models and possibly lead to bet-
ter results in predictions for an entire bracket. However,
we do see that the three new architectures explored in this
section perform better in terms of accuracy than the MLP
and LSTM baseline models. This is due to these architec-
tures having more advanced mechanisms for long-term pat-
tern recognition than that of our baseline models, despite
not being given enough data to fully learn the dataset.

Figure 4. Spider plot comparing performance across all models

5.3. Testing on 2025 Bracket

The ultimate test for any of these models was the 2025
March Madness bracket. We took the trained transformer
and the LSTM models and predicted the outcomes of the
games to build our own brackets. Figure 5 shows the result
of using the transformer.

Figure 5. Predicted Bracket from Transformer

Overall, this was a poorer showing than expected. Many

of the highly-seeded teams were knocked out by teams that
were not in the same tier of skill. The network predicted 10
games correctly out of the 32 first-round games. Over the
course of filling out this bracket, we noticed a few reasons
that this result did not meet expectations.

When creating the dataset and while predicting games,
one team is denoted as Team 1, and the other is denoted as
Team 2. During dataset creation, these denotions were ran-
domly assigned, so that the team number would not affect
the results. When we started predicting games however,
we noticed that Team 2 won most of the matchups, but
also that when we swapped which team was 1 and which
team was 2, the winner of the matchup changed, sometimes
by a large margin (10 or more points). For example, for
Auburn vs. Alabama St., if Alabama was Team 2, it won
by around 10 points. But if Auburn was Team 2, then it
won by a similar margin. Despite attempts to randomize
this assignment and to normalize the final scores during
training and un-normalize the predictions, this discrepancy
still occurred.

Another reason for this poor performance could be that
the stats from the games alone were not enough. Some of
the lower seeded teams (such as 14, 15, or 16) had much
easier schedules, and thus their statistics from past games
in their regular season may have looked better than those of
higher-seeded teams who had tougher schedules. The stats
from every team’s games were looked at in a vacuum; that
is to say they didn’t incorporate any knowledge about team
conference or seeding, which was our intent. So there is a
good chance that because the network did not have access
to this type of ”program” information about each team (i.e.
quality of their program), it simply gave the nod to teams
with better numbers in their previous games, which weren’t
adjusted in any way for the level of team they were playing
against. This makes sense when the network was trained on
all teams’ data and couldn’t retain information about indi-
vidual teams.

Figure 6 shows the predictions made by the LSTM
model. It made 13 correct predictions out of the first
round of 32 games. This was slightly better than the
transformer model’s predictions, but here too the bracket
spiraled quickly out of control. Most noticeably, the Final
Four was composed of two 16-seeded teams and a 13
seed, which is highly unlikely to ever happen. Comparing
the first round results of this bracket to the transformer
bracket, the two models made 15 different choices over
the 32-game slate. This indicates a sense of randomness,
which can be expected from the training accuracies of
both models. However, there are some similar trends, in
how the most lowest-seeded teams (13-16) are consistently
beating higher seeds, which points to the easier schedules

6



Figure 6. Predicted Bracket from LSTM

and better numbers reasoning mentioned previously.
Certain teams like Michigan and Georgia were favored
by both to some extent, and middle-of-the-pack teams
had a possibility of knocking off one of the lower-seeded
statistical powerhouses. The flip-flopping of wins based
on the assignment of each team to 1 or 2 was much less
prevalent with this model, on the positive side.

The comparison of the choices made by both models
seems to indicate that randomness is a factor, or in other
words, features that weren’t accounted for. Also, the com-
mon preferences for certain teams indicates that there are
some elements of this that the network understands and
those can be investigated further in future work.

6. Conclusion
Overall, the networks did not seem to learn enough to

do better than picking winners nearly at random, even with
the inclusion of time-series data to capture momentum.
However, we still gained insights from a machine learning
perspective on the knowledge that the networks likely
required and the representation of that knowledge.

The first insight was that data augmentation can be criti-
cal for success - finding a way to improve our assignment
of teams to Team 1 and Team 2 would be a suggestion for
future work. Ideally, we would want the predicted result of
the game to stay the same, regardless of who is assigned
which team number.

The second insight was that we needed a way to capture
team ”goodness” in the features. The statlines from
previous games wasn’t enough to explain to the network
that a team like Alabama St. would likely lose nine out
of ten games to a team like Auburn, even if Alabama

St. had put up great numbers against their competition.
For future work, information about current records and
conference membership could boost the network’s ability
to discern this. In general, this is the difference between the
regular season and the NCAA tournament, because many
lower-seeded teams do not get the opportunity to play
top-end talent during the season, so adjusting for that in the
tournament predictions is difficult, outside of committee
seed assignments.

This type of approach may be more useful at the NBA
level, where the competition is much tighter and every team
plays each other for the most part during the regular season.

7. Discussion on Deep Learning Aspects

In our project, we tackled March Madness outcome
prediction as both a binary classification and a regression
problem, aiming to predict winners and final scores using
historical game data. Given the importance of momentum
and performance trends in basketball, we focused on time
series analysis, primarily leveraging LSTM models to
capture sequential dependencies. We also experimented
with CNNs, MLPs, and Transformers using a fixed window
of past games for comparison.

Our models learned all parameters in convolutional,
recurrent, and dense layers, since we were training from
scratch, while post-processing steps like interpreting
probabilities into decisions remained non-learned. Inputs
were normalized and structured as windows of game
history between two teams, and outputs were either win
probabilities or score vectors, depending on the task.
Binary cross-entropy and mean squared error were used
as loss functions. To combat overfitting and encourage
generalization, we randomized team ordering and applied
batch normalization and dropout. We tuned hyperparame-
ters such as learning rate, batch size, and window size, with
Adam serving as the optimizer. We used PyTorch, starting
with simple architectures and gradually making them more
complex based on performance.

Overall, our deep learning approach provided insights
into how past performance impacts tournament outcomes
and demonstrated the strengths and challenges of time-
series modeling in sports prediction.

References
[1] Jordan Gumm, Andrew Barrett, and Gongzhu Hu. A machine

learning strategy for predicting march madness winners. In
2015 IEEE/ACIS 16th International Conference on Software
Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), pages 1–6, 2015. 1

7



[2] Jun Woo Kim, Mar Magnusen, and Seunghoon Jeong. March
madness prediction: Different machine learning approaches
with non-box score statistics. Managerial and Decision Eco-
nomics, 44(4):2223–2236, Jan. 2023. 1

[3] N. David Pifer, Timothy D. DeSchriver, Thomas A. Baker,
and James J. Zhang. The advantage of experience: Analyzing
the effects of player experience on the performances of march
madness teams. Journal of Sports Analytics, 5(2):137–152,
Oct. 2018. 1

[4] Gang Shen, Di Gao, Qian Wen, and Rhonda Magel. Predict-
ing results of march madness using three different methods.
Journal of Sports Research, 3(1):10–17, Jan. 2016. 1

[5] Bart Torvik. 2025 team stats – customizable college basketball
tempo free stats. Web, 2025. 2

8. Team Contributions

Student Name Contributed Aspects Details
Kiran Nazarali MLP and CNN Implemen-

tation and Training; Ex-
ploratory Data Analysis and
Feature Selection; Report
Writing

During the midterm phase, I implemented and trained MLP and CNN
models with a fixed window method using the 2019 dataset, developing
the models from scratch. For the final phase, I conducted exploratory
data analysis focusing on feature correlations, PCA, and PCA loadings
to identify key contributing features; the extracted PCA components
were then used by other team members in their models. I also helped
with report writing.

Henry Raman Transformer Implementa-
tion and Training; Imple-
mentation of a pipeline for
using all datasets; report
writing

During the midterm phase of the project, I wrote the project check in
report and helped analyze the results of training and testing on the var-
ious models. During the final phase, I implemented the transformer
model and trained it on the 2019 dataset. After all of the models had
been trained on just the 2019 dataset, I added a pipeline that allows us
to train each of the models on all of the datasets that we had collected,
providing more robust training and better results. I also aided in the
writing of the final report.

Sheraz Hassan Completely handled Plotting
script, LSTM, 2 combined
models of LSTM and CNN;
Handled CNN, MLP and
Random forest to run over
all data; Report writing

I wrote the script that reads all the results from all models and plots them
to keep everything consistent. To make sure all models give the same
type of output, I integrated the needed changes into the CNN, MLP, and
Random Forest pipelines. I also rewrote the CNN, MLP, and Random
Forest code so they can run on PCA-transformed data. I fully wrote the
LSTM model and also worked on two different combined models using
LSTM and CNN. Besides that, I also helped with writing the report.

Sai Sriraman Time-series idea for tech-
nical direction, dataset re-
trieval and pipeline creation,
bracket testing and resulting
analysis, report writing

I led the technical direction for the project in terms of investigating
the time-series approach for March Madness games. I found the data
sources and created the pre-processing pipeline for loading the data,
cleaning it, and making the rolling windows. I took the completed mod-
els and developed the testing pipeline for the 2025 bracket and analyzed
the results of these predictions. Finally, I helped with writing the report.

Table 3. Contributions of team members.

8


