Does the plate look correct?

SRIVINAYAK CHAITANYA ESHWA, seshwa@gatech.edu

SHERAZ HASSAN, shassan74@gatech.edu
RENCHU WANG, rentruewang@gatech.edu
SACCHIT MITTAL, skmittal@gatech.edu

In the competitive restaurant market, a perfectly plated meal that can be
enjoyed with all human senses helps differentiate restaurants by playing a
pivotal role in customer satisfaction and service efficiency. Food standard-
ization regarding visual appearance and portion sizes promotes customer
loyalty and positive word-of-mouth [1]. However, ensuring consistency in
plating and presentation across diverse dishes in a restaurant can take time
and effort, with a significant monetary impact. Our computer vision system,
accompanied by a mobile application for automated food standardization,
to determine if a plate of food in a restaurant adheres to specified standards
in terms of presentation and composition, allows restaurants to deliver visu-
ally appealing and consistent dishes. From an economic perspective, it can
lower operational costs by minimizing the need for manual inspection and
re-plating, aiding resource allocation and even menu optimization.

1 INTRODUCTION

With increasing competition in the restaurant market, visual aes-
thetics and consistency (across multiple locations) are crucial to
improving the customer experience and promoting customer loy-
alty. Setting up manual systems to ensure the same would cause
restaurants to incur significant costs. Hence, we worked on a sys-
tem to automate the process so that the staff could immediately
recognize an issue with a plate of food concerning aesthetics and
consistency in terms of portions and ingredients.

Our solution consists of a comprehensive system with an iPad
application that allows the restaurant staff to take pictures, send
them to our servers for evaluation, and display the results to the staff.
The results provide the staff with immediate feedback regarding the
plate based on visual appearance. To simulate how a restaurant’s
Quality Assurance (QA) station would capture these images, we
used an external camera connected to the iPad.

Real-time detection of the food layout requires a Computer Vision
(CV) model that can process and segment images in real-time on the
domain of food classification. We also needed to detect ingredients
and their positioning to determine where the ingredients are and
their relative position. Then, we have to classify which target menu
item the dish is. The results must then be communicated to the
restaurant staff through the application.

To summarize, we achieved the following milestones

e Trained CV Model for Ingredient Detection
e Menu Item Identification through Ingredients Classification
e Calculation of Similarity Score Using Segmentation Mask
e Creation of an iPad application for seamless interaction
The report is organized with Section 2 providing a background,
Section 3 describing the methodology, Section 4 addressing chal-
lenges, Section 5 presenting results, Section 6 offering conclusions,
and Section 7 outlining future work.

2 BACKGROUND

Multiple datasets [2] and [3] with labeled images are available
for food-related tasks. However, these datasets (what we note as
“dishes datasets") only provide the names and categories of the
entire dish, but not the segmentation of an image and what ingre-
dients/components a dish has. We ended up using UECFOODPIX
[4], a segmentation dataset based on FOODPIX [5], which is itself a
dishes dataset. This dataset includes pixel-level segmentation labels
for 10k with 101 classes of food items.

Since our segmentation model is expected to be fast and run in
real-time, we have explored several options. We explored from R-
CNN [6], Fast R-CNN [7], Faster R-CNN [8], and YOLO [9], which to
this date is still state of the art [10]. Compared to the R-CNN family
of models, using YOLO on dataset segmentation has the benefit
that most of the work in segmentation is done in machine learning
models and thus can be deployed and run on GPU accelerators, sig-
nificantly speeding up the inference process. In this work, we used
YOLOV8 as our backbone for fine-tuning. YOLOVS is pre-trained
on the COCO dataset [11] and is faster and more accurate than its
predecessor because of its updated architecture, which is suitable
for real-time prediction.

Moving on to the iPad application, we explored card sorting [12]
technologies to determine the information architecture. However,
due to the lack of access to restaurant staff, we created a proto-
type iPad application first and used techniques like interviews and
cognitive walkthroughs to evaluate it. The latest developments in
Apple’s AVFoundation API helped us to connect the external camera
seamlessly to the iPad application.

3 METHODOLOGY
3.1 Data Pre-processing

We used the UECFOODPIX [4] dataset for our model. It has 10000
images of 101 different food classes. We refer to these food classes
as ingredients for our dishes. Since UECFOODPIX is a segmentation
dataset with a pixel-by-pixel mask, it is incompatible with the YOLO
model as the model requires the input to be a text file with all the
polygons of each item preceded by the label of each item. To combat
this issue, we converted all the masks of the images into polygons.
We then divided the images into a ratio of 9 to 1 for training and
validation purposes.

3.2 Model Training

We opted for YOLOv8 [3] as our backbone with Keras-CV [13]
for their ease of configuration as the framework for our backend.
Among the various options within the YOLOv8 model to get the
segmentation mask and classification of the ingredients, we used
the nano model to minimize latency, and it has the least number of

111:2 « Srivinayak Chaitanya Eshwa, Sheraz Hassan, RenChu Wang, and Sacchit Mittal

train/box_loss train/seg_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B) metrics/precision(M) metrics/recall(M)
0.70 L 1.100
1.2 0.70
0.65 14 l 1075 070 ﬁ 0.65 { 0.65
0.65
0.60 4 11 1.2 1.050 0.65
0.60 0.60
0.55 1.0 1.0 1.025 0.60 0.60
050 08 1.000 0.55 055
09 0.55 0504 055
0.45 4 —— results 0.6 k 0.975 0.50 -
smooth 4
0404, : 08 : : : : 2| 09501, : Ho0as, : : : : Jo : J osol, : :
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
val/box_loss val/seg_loss val/cls_loss val/dfl_loss metrics/mAP50(B) metrics/mAP50-95(B) metrics/mAP50(M) metrics/mAP50-95(M)
0.68 1.6 112 0.70 0.70
130 ’ 0.60
0.66 0.60
15
1.10 0.65 0.65
0.64 1.25 0.55
14 1.08 0.55
0.62 4 0.60 0.60 4
1.20
0.604 13 1.06 0.50 0.50
0.55 0.55
0.58 115 "/ 1.2 1.04
' 0.45 0.45
0.56 1.02
50 101

o
v
5
=
o
5
5}

0 50 100 [0 50 100

o
o
<)
.
o
5
5}
v
o
-
1}
S
o
o
<)
—
o
5]
o

50 100

Fig. 1. YOLOv8-nano Training Results on UECFOODPIX

parameters. The loss function employed during training is Mean
Squared Error (MSE), represented as:

13 X
MSE Loss = ~ > (yi = §i)°)
i=1

where n is the number of samples, y; is the ground truth, and g; is
the predicted value.

We trained the model on V100 GPU for 100 epochs employing a
learning rate of 0.001 and ADAM optimizer. To prevent overfitting,
we utilized a checkpoint to get the weights of the model with the
minimum segmentation validation loss instead of the last trained
model. The training and validation loss of the model across epochs
is depicted in Figure 1.

This trained model depicts proficiency in predicting the segmenta-
tion mask and classification with bounding boxes of the ingredients
in the UECFOODPIX dataset. We used this ability of YOLOv8 to
both classify and segment at the same time in our favor to achieve
the required results in the post-processing steps.

3.3 Menu Item Prediction

We utilize the classification and bounding box capabilities of YOLOvS
to classify each ingredient within the image individually. This en-
ables us to identify the labels and count of each ingredient in the
image. Once we have identified all the ingredients, we refer to the
menu dictionary containing the menu items and their correspond-
ing ingredients. Through cross-comparison, we calculate a score
indicating how closely the detected ingredients match those in the
menu items. The menu item with the highest closeness score is then
predicted as the menu item in the image.

Number of Matching Ingredients
* 100

@

Confidence Percentage = - -
Total Ingredients in Menu Item

3.4 Similarity Score

We originally planned for a pretraining + finetuning approach, much
like many modern deep learning systems. However, we ended up
using a similarity-based approach. When an image comes in, and
we predict the menu item in the image, we cross-match the seg-
mentation masks of the ingredients with the “standard menu item"
image we have in the storage and decide the similarity between
each ingredient within the image. The reason for the decision is
two-fold:

e We have been in contact with the restaurant late into the
semester, where we have started most of our work.

o The restaurant could not provide too many high-quality
images and could only provide 1-2 images per menu item.

We first use the YOLOv8 model we finetuned to decide the loca-
tion/layout of the ingredients on the dish, and then adopt algorithms
like SIFT [14] and ORB [15] that are rotational invariant to figure
out the best match between the dish and the menu items. How-
ever, during experiments, we realized that it was not robust enough.
Sometimes, even flipping the image would yield a low similarity
score. Hence, we added the open-source version of OpenAI’s CLIP
model [16] to compute the similarity score as an additional feature.

3.5 iPad Application

We conducted a need-finding exercise using interviews with an
executive of the restaurant we were working with and our project
mentor. We identified the requirements to build a prototype. We
built an iPad application prototype using Apple’s Xcode IDE using
the Swift programming language. This prototype could connect
to an external camera to take images, upload them to the server
for evaluation, and display the results once the evaluation was
completed. It also had a data collection mode (not connected to our
backend), which allows restaurant staff to collect and label images
of plates to train our model further. We developed the user interface
to get feedback to address any shortcomings.

For the backend, we used Firebase Storage and Firebase Realtime
Database along with listeners. The front end is connected to these

storage and real-time databases. Once the front end captures an
image, the storage is updated with the image. Through listeners, we
can detect these changes in the database. Once these changes are
detected, the uploaded image is downloaded on the local machine
and fed to the machine learning model. After the model processes
the image, it returns a JSON with the output image and the simi-
larity score. This image is posted to the storage, and the database
is updated with the new JSON. Again, through listeners, we can
detect these changes in the database. Once the change is detected,
the frontend pulls the updated JSON, which has the image and simi-
larity score. The JSON is parsed to retrieve the output image and to
retrieve the similarity score. Finally, the output image, along with
the similarity score, is presented on the User Interface.

4 CHALLENGES

In our class, we aim to create computing services that can run ev-
erywhere at users’ convenience. We want to make invisible systems
that could make visible impacts. In our project, we designed and
created a versatile food layout detection system that users interact
with with just an iPad and a camera mounted on top of the food
tray. When food is ready, and the kitchen has to notify the servers
to serve the food, they could, at a button’s convenience, check if the
food’s layout is correct within seconds. In addition, the system is
versatile enough that new dishes can be added to it anytime so that
restaurants are not hesitant to innovate on the dishes they offer!

However, we faced multiple challenges when assembling our
results, starting with the challenges within the model. With our
strict requirement on data (food-related, have segmentation), we
are unable to find a large amount of data for training purposes. We
overcame this with a pre-training + fine-tuning approach where
we used the pre-trained YOLOv8 models, which are trained on the
COCO dataset [11] and then fine-tuned on our [4] dataset.

Another issue that we faced within the UECFOODPIX dataset
was that there was a data imbalance as seen in Figure 2.

3000 -
2500 -
2000 -

1500 -

instances

1000 -

500 -
o- , linhdlgis qlmq.ﬂuq.‘Lh,
0 20 40 60 80 100
classes

Fig. 2. Distribution of each Class

This data imbalance made it difficult for the model to predict
certain classes (1 - 8) with fewer instances, which was reflected in

Does the plate look correct? « 111:3

our results during prediction. The solution to this issue was not as
simple, however because multiple classes were present in a single
image, and we could not just pick and choose certain classes within
an image to train the model.

In the next step, when we went to YOLOv8’s official repository
for the most up-to-date model from the original authors, we realized
that the authors did not fully open-source the training part of the
model; that is, the open-sourced version is limited to only fine-
tuning on a single label, which is insufficient for our purposes. In
addition to a completely new set of labels, we also wanted to fine-
tune the YOLOv8 models on the multiple labels that we need to
detect the layout of the dishes successfully. Thus, we looked to
another framework, Keras CV, that provides both the model weights
and fine-tuning utilities such that we could handle the training
efficiently.

During the app development step, the initial need-finding exercise
was delayed due to the availability of the restaurant’s executive.
Hence, the user interface needed to be modified a little later in the
project timeline. We were not able to get access to the restaurant
staff, and hence we could not conduct card sorting to inform the
information architecture.

5 RESULTS

Fig. 3. Predicted Segmentation Mask and Class Labels

We evaluate our model classification based on precision and recall.
Precision is the ratio of correctly predicted positive observations
to the total predicted positives and recall is the ratio of correctly
predicted positive observations to the total actual positives. Their
equations are given by:

True Positives

Precision = — — (3
True Positives + False Positives

Recall = True Positives @
%= True Positives + False Negatives

After training and testing the model, we obtained the following
results when evaluating it on 1000 images:

111:4 « Srivinayak Chaitanya Eshwa, Sheraz Hassan, RenChu Wang, and Sacchit Mittal

precision(B) | recall(B) | precision(M) | recall(M)
0.68016 0.663 0.67987 0.66151

Here, (M) refers to the "macro" average, which calculates the
average performance metric over each class, and (B) refers to the
"best" performance metric achieved by the model during the training
process. The results in the confusion matrix, shown in Figure 4,
indicate overall satisfactory performance.

Confusion Matrix Normalized

Predicted

10299 96 93 90 87 84 81 78 75 72 69 66 63 60 57 54 5148 4542 30 36 333027 2421181512 9 6 3 0

0 3 6 9 121518212427 30 33 36 30 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99102

Fig. 4. Confusion Matrix of Results

However, there are noticeable challenges in predicting the first
few classes, as observed in the confusion matrix, which is caused by
class imbalance, as discussed earlier. Some of the predicted masks
and classification labels by our model can be visualized in Figure 3.

The iPad application allowed users to click images of the good
items using an external camera and view the evaluated results as
shown in Figure 5. The restaurant staff can use this data to make an
informed decision on whether or not the plate meets the restaurant’s
standards.

Results: 'Deal 1-Pizza with a Confidence of || Results: 'Deal 3-Miso Soup with a

Confidence of 81.57% in ingredients, and
73.18% in image similarity'

(@) (b))

66.67% in ingredients,and 62.19% in
image similarity."

Fig. 5. Output Displayed on iPad Application

6 CONCLUSION AND REFLECTION

To conclude, we built a fully functional iPadOS app that captures
an image of a plated dish and displays the output image and a
similarity score on the User Interface. In our process of building out
the User Interface, due to a shortage of time and lack of access to
the restaurant executive, we could not conduct card sorting. So, we
conducted a round of cognitive walkthroughs and an interview with
our project mentor to evaluate our interface. We overcame our issue
of lack of training data by utilizing a pre-training and fine-tuning
approach along with training the model for ingredients rather than
training it for menu items, which will also decrease the need for
retraining with new menu items included as the new item might
be using the same ingredients. For the most part, this worked well
for us. Due to reasons beyond our control, we could not work with
AWS and had to opt for local hosting of the model and connecting
the app and model through Firebase.

In the future, we plan to move away from using listeners to detect
changes in the Firebase real-time database, host the application on
AWS, and ensure communication between the front end and the
model through REST-API. This will help reduce latency and allow
for future third-party integration or easier expansion. Capturing
the image is done manually, which requires intervention by the
restaurant staff. An auto-capture feature can be implemented that
automatically detects when a plated dish is kept in front of the
camera and takes a picture, which will help the restaurant save
time, reduce labor, and streamline its operations. On the Model end,
making it easily trainable from within the app for a new ingredient
in the menu item is a part of the future goals. Additionally, the
model’s prediction can be improved by using a more advanced
YOLOVS rather than nano but then pruning the model to decrease
the number of parameters and ultimately decrease the latency.

REFERENCES

[1] A.N.Putra, S. P. Anantadjaya, and I. M. Nawangwulan, “Customer satisfaction
as a result of combination of food display quality,” Manajemen dan Bisnis, vol. 19,
no. 2, 2020.

[2] S.P.Mohanty, G. Singhal, E. A. Scuccimarra, D. Kebaili, H. Héritier, V. Boulanger,
and M. Salathé, “The food recognition benchmark: Using deep learning to
recognize food in images,” Frontiers in Nutrition, vol. 9, 2022. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnut.2022.875143

[3] A. Antonov, “Food-11 image dataset,” Dec 2019. [Online]. Available: https:
/lwww.kaggle.com/datasets/trolukovich/food11-image-dataset

[4] K. Okamoto and K. Yanai, “UEC-FoodPIX Complete: A large-scale food image
segmentation dataset,” in Proc. of ICPR Workshop on Multimedia Assisted Dietary
Management(MADiMa), 2021.

[5] T.Ege and K. Yanai, “A new large-scale food image segmentation dataset and its
application to food calorie estimation based on grains of rice,” in Proc. of ACMMM
Workshop on Multimedia Assisted Dietary Management(MADiMa), 2019.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” 2014.

[7] R. Girshick, “Fast r-cnn,” 2015.

[8] S.Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object
detection with region proposal networks,” 2016.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 779-788.

[10] P.Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm develop-
ments,” Procedia Computer Science, vol. 199, pp. 1066-1073, 2022.

[11] T.-Y.Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ra-
manan, C. L. Zitnick, and P. Dollar, “Microsoft coco: Common objects in context,”
2015.

[12] J.R. Wood and L. E. Wood, “Card sorting: current practices and beyond,” Journal
of Usability Studies, vol. 4, no. 1, pp. 1-6, 2008.

https://www.frontiersin.org/articles/10.3389/fnut.2022.875143
https://www.kaggle.com/datasets/trolukovich/food11-image-dataset
https://www.kaggle.com/datasets/trolukovich/food11-image-dataset

Does the plate look correct? « 111:5

[13] L. Wood, Z. Tan, L. Stenbit, J. Bischof, S. Zhu, F. Chollet, D. Sreepathihalli, R. Sam- 2564-2571.
path et al, “Kerascv,” https://github.com/keras-team/keras- cv, 2022. [16] G.Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini, R. Taori, A. Dave,
[14] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna- V. Shankar, H. Namkoong, J. Miller, H. Hajishirzi, A. Farhadi, and L. Schmidt,
tional journal of computer vision, vol. 60, pp. 91-110, 2004. “Openclip,” Jul. 2021, if you use this software, please cite it as below. [Online].
[15] E.Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative Available: https://doi.org/10.5281/zenodo.5143773

to sift or surf,” in 2011 International conference on computer vision. leee, 2011, pp.

https://github.com/keras-team/keras-cv
https://doi.org/10.5281/zenodo.5143773

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Pre-processing
	3.2 Model Training
	3.3 Menu Item Prediction
	3.4 Similarity Score
	3.5 iPad Application

	4 Challenges
	5 Results
	6 Conclusion and Reflection
	References

